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Sales Tax Growth Rates
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FY2021 General Fund Revenues
(FY21 revenue totals, $ million)
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FY21 Actual 
Receipts

FY21 
Enacted 

Estimate

Difference 
from 

Enacted

Percent 
Change 

vs. FY20

Sales and Use $4,561.0 $4,232.8 $328.2 12.0
Individual Income 5,143.8 4,813.0 330.8 7.9
Corp Inc & LLET 882.8 547.5 335.3 38.1
Coal Severance 56.1 52.4 3.7 -4.7
Cigarette Taxes 349.9 345.2 4.7 -1.4
Property 702.5 663.7 38.8 9.2
Lottery 289.1 286.1 3.0 6.5
Other 842.2 763.3 78.9 10.4
TOTAL $12,827.4 $11,704.0 $1,123.4 10.9%



Monthly Sales Tax Collections
(Millions $, Influenced by Federal Stimulus efforts from CARES, CAA, and ARP)
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FY2022 General Fund Revenues
(FY22 revenue totals, $ million)
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Dilemma We are Facing

¨ Underestimated the sales tax for two consecutive 
years, frankly tired of chasing it up

¨ Chosen composite forecasting for the sales tax
¨ Time series models have performed better in-

sample, but …
¨ Is there a turning point coming, despite 12.8% 

growth in the first quarter?
¨ Structural models tend to do better during turning 

points vis-à-vis pure time series approaches
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FY2023 General Fund Revenues
(FY23 revenue totals, $ million)
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Table 1
General Fund Interim Forecast

$ millions

FY23 FY23
Q1 Q2, Q3, & Q4 Full Year Official CFG

Actual % Chg Estimate % Chg Estimate % Chg Estimate $ Diff

Individual Income 1,368.9 8.4 4,399.8 -8.1 5,768.7 -4.6 5,342.3 426.4
Sales & Use 1,397.1 12.8 4,210.6 10.1 5,607.7 10.8 5,283.2 324.5
Corp. Inc. & LLET 337.2 16.0 1,056.6 17.9 1,393.8 17.5 909.8 484.1
Property 68.0 7.8 690.7 4.5 758.7 4.8 674.9 83.8
Lottery 75.0 7.9 262.0 16.2 337.0 14.2 335.0 2.0
Cigarettes 81.1 -3.4 231.4 -3.8 312.5 -3.7 318.6 -6.1
Coal Severance 22.1 72.2 72.8 25.9 94.9 34.3 76.6 18.3
Other 207.1 -48.7 636.1 8.3 843.2 -15.0 818.7 24.5

General Fund 3,556.6 3.8 11,559.9 2.5 15,116.5 2.8 13,759.0 1,357.5



Lessons Learned from the Last 2 Years

¨ Time Series versus Structural Models
¤ Don’t disregard the various time series approaches (VEC, ARIMA, VAR, 

Cointegration)

¤ Consider composite forecasting

¨ Difficulty in fitting dummy variables (inflation, fiscal 
stimulus, etc.) and populating dummies going forward

¨ Differenced data versus nominal or log specifications
¨ Consider the length of your estimation sample
¨ Turning points and time series models
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Sales Tax Model Current Unofficial
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Sales Tax Model Fall 2022
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Model Specifications, Sales Tax
(Used in the latest Unofficial Estimates)

¨ Time Series for Estimation: 2010q1 to 2022q3
¤ Have data back to 1990q1

¤ Many law changes dating back that far

¨ All models use seasonally-adjusted data
¨ Arima {AR (1,3); 1st difference; MA ( 1,4,5)}
¨ Cointegration (Sales and Withholding)

¨ VAR (Sales and Wages & Salaries)
¨ Structural Models (SRTAFS_0 Nominal Retail Sales); (CDFHE_0 

Consumer Spending Furniture and Durable Home); 
(DOMPURCH_0) Final Sales to Domestic Purchasers;
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Advocacy for Time Series Models
(Suggest Blending for longer-term forecasting)

¨ Time series models have a place at the table during 
times where growth is faster than the underlying 
economy would predict

¨ Even ARIMA models can be used if the forecasting 
horizon is short; Avoid a-theoretical models for 
longer time horizons

¨ VAR models have a built-in check
¨ Still feel the need to blend in structural models
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Aside:  How to Blend?

¨ Subjective Methods
¤ Averaging or weighted averaging (but how do you determine the 

weights?)
¤ Let the “decider” help determine the weights

n Decider could be either the chief revenue estimator; or

n The consensus forecasting group who oversees the process

¨ Objectively
¤ Restricted Least Square where the restriction is that the coefficients must 

add to 1(Use the forecasts you wish to blend as the regressors to predict 
the withheld historical observations in-sample)

¤ Weight by the MSE or AIC, SIC methods

13



Restricted Least Squares Method

¨ Withhold 8 to 12 quarters of data from the 
estimation sample.

¨ Get the forecasted values for each equation
¨ Then forecast the 8 to 12 quarters you withheld

¤ Dependent Variable is Sales Tax 
¤ Independent Variables are your forecasted values you 

wish too blend

¨ You must restrict coefficients to equal 1
¨ Sales = c + B1(F1) + B2(F2) + 1-B1 -B2 (F3) 
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Lesson 2 – Dummy Variables

¨ Considered dummy variables for inflation and for federal 
fiscal policy

¨ Problems:
¤ Don’t fit statistically if your model dates back very far

n No variation in the dummy until COVID period)
n Coefficients insignificant

¤ How do you  populate the dummy variable going forward?
n Example:  Fiscal Stimulus. How do we know which present and future 

quarters will be 1 or Zero? 

¤ Quickly get Dummy Paralysis if you try to account for all 
exogenous possibilities that require dummy variables
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Lesson 3 – Differenced Data
16

Null Hypothesis: SALES_SA has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=3)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic  0.560400  0.9828
Test critical values: 1% level -3.959148

5% level -3.081002
10% level -2.681330

*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20 observations
        and may not be accurate for a sample size of 15

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SALES_SA)
Method: Least Squares
Date: 10/21/22   Time: 11:49
Sample (adjusted): 2019Q1 2022Q3
Included observations: 15 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

SALES_SA(-1) 0.075009 0.133850 0.560400 0.5855
D(SALES_SA(-1)) -0.611567 0.257786 -2.372387 0.0352

C -43.52620 147.0470 -0.296002 0.7723

R-squared 0.323966     Mean dependent var 25.29898
Adjusted R-squared 0.211293     S.D. dependent var 61.82121
S.E. of regression 54.90291     Akaike info criterion 11.02587
Sum squared resid 36171.95     Schwarz criterion 11.16748
Log likelihood -79.69400     Hannan-Quinn criter. 11.02436
F-statistic 2.875288     Durbin-Watson stat 2.436106
Prob(F-statistic) 0.095458



Dependent Variable in Levels
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Dependent Variable: SALES_SA
Method: Least Squares
Date: 10/21/22   Time: 11:24
Sample: 2010Q1 2022Q3
Included observations: 51

Variable Coefficient Std. Error t-Statistic Prob.  

C -48.60816 24.39196 -1.992795 0.0519
SRTAFS_0 0.168530 0.004232 39.82638 0.0000

R-squared 0.970033     Mean dependent var 907.8747
Adjusted R-squared 0.969422     S.D. dependent var 174.1502
S.E. of regression 30.45310     Akaike info criterion 9.708679
Sum squared resid 45442.17     Schwarz criterion 9.784437
Log likelihood -245.5713     Hannan-Quinn criter. 9.737628
F-statistic 1586.140     Durbin-Watson stat 0.512677
Prob(F-statistic) 0.000000



Dependent Variable in Logs
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Dependent Variable: LOG(SALES_SA)
Method: Least Squares
Date: 10/21/22   Time: 11:26
Sample: 2010Q1 2022Q3
Included observations: 51

Variable Coefficient Std. Error t-Statistic Prob.  

C -2.117167 0.245936 -8.608624 0.0000
LOG(SRTAFS_0) 1.032749 0.028495 36.24306 0.0000

R-squared 0.964038     Mean dependent var 6.794574
Adjusted R-squared 0.963304     S.D. dependent var 0.179926
S.E. of regression 0.034467     Akaike info criterion -3.859210
Sum squared resid 0.058210     Schwarz criterion -3.783452
Log likelihood 100.4099     Hannan-Quinn criter. -3.830261
F-statistic 1313.559     Durbin-Watson stat 0.422920
Prob(F-statistic) 0.000000



Differenced Dependent Variable
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Dependent Variable: D(SALES_SA)
Method: Least Squares
Date: 10/21/22   Time: 11:30
Sample: 2010Q1 2022Q3
Included observations: 51

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.374759 3.380882 -0.110847 0.9122
D(SRTAFS_0) 0.170679 0.018326 9.313535 0.0000

R-squared 0.639021     Mean dependent var 13.15730
Adjusted R-squared 0.631654     S.D. dependent var 35.92105
S.E. of regression 21.80103     Akaike info criterion 9.040218
Sum squared resid 23288.96     Schwarz criterion 9.115975
Log likelihood -228.5255     Hannan-Quinn criter. 9.069167
F-statistic 86.74193     Durbin-Watson stat 2.470990
Prob(F-statistic) 0.000000



Differencing Data or Not?
(Forecasting Sales Tax, Structural Model, Using Nominal Variable, Natural Logs, and Differences)
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Natural Logs versus Differences
(Corporation Income Taxes)
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Lessons Learned 4 – Length of Sample

¨ The rule of thumb that you should always use the 
entire sample size when running a regression is not 
always true in time series modeling

¨ Factors to consider:
¤ Tax Reform – Need to have a policy-neutral dependent 

variable
¤ Major court cases or board of tax appeals rulings can 

affect a time series
¤ Changes in the administration of a tax can corrupt a 

time series
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Forecasting Differences due to Sample Size
(Structural Model with US Retail Sales)
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Lesson 5: Times Series and Turning Points

¨ While time series models may have predicted the 
past better than some other models, they do not 
capture turning points

¨ Structural models will better reflect the macro 
turning points projected by IHS Markit

¨ Still feel the need to blend given past forecasting 
errors
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Sales Tax Model Fall 2022
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Disaggregation of Past Errors

¨ Errors in IHS Markit forecasts that provide predicted 
values in structural models
¤ Mitigated by composite forecasting
¤ Made up over one-half of the error in structural models

¨ Errors in time series models
¤ Smaller differences in sample
¤ Could change around turning points

¨ True error was that we didn’t trust the time series 
models enough to use objective weights
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Conclusions

¨ Forecasting is difficult when the data are ill-behaved
¨ Consider composite forecasting or blended forecasts
¨ Don’t completely rule out time series models if your 

goal is accuracy in the short run
¨ Differenced data is preferable for nonstationary 

dependent variables
¨ Don’t let your preconceived beliefs dictate your 

weights or selection of models
¨ Time series models may overshoot in periods of 

turning points
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