General Methods for Deriving Fiscal Estimates

- Data analysis (e.g., Census Bureau, Bureau of Labor Statistics)
- Forecasting based on previous estimates
- Use national estimates to cost out state estimates
- Survey based on previous research

Meta-Regression Analysis

What is it?

Regression analysis of regression analyses (Stanley and Jarrell, 1989)

Why might you need it?

- Lots of existing research
- Research results are inconclusive

How is it better than survey?

- Accounts for within-study and across-study variation
- Aids in specifying a proper model
- Gives baseline estimate based on study-specific controls

What Do We Need for MRA?

Identify your research question(s)

Research good sample of primary studies

- Articles published in scholarly journals (use "snowball method")
- Working papers (avoid "file-drawer" problem)

Select acceptable studies

Enterprise Zones

Designated within "distressed" areas or those with potential for expansion

• Based on income, education, population and building vacancies

Businesses within an EZ often receive labor and capital tax incentives

Studies have examined the effectiveness of EZs on economic growth

- Employment
- Wages or income
- Machinery and equipment
- Property values

How Do We Create the Dataset

Dataset is based on primary studies

- Estimation results
- Study features

Identify the variables being used to estimate the effect size in your primary studies

Dataset

Study Ch													
studyid	authors	avg. data		5	۲-	کر ب	; ;		effect size =	+ c+o+	2.5	200	nub
•		year							est./s.e.				pub
1	Couch et al. 2005	1986	MS	492	4	487	0.014	0.004	4.090	4.090	0.000	0.087	1
1	Couch et al. 2005	1986	MS	492	4	487	0.015	0.004	4.040	4.040	0.000	0.094	1
1	Couch et al. 2005	1986	MS	492	86	405	0.054	0.017	3.160	3.160	0.002	0.964	1
1	Couch et al. 2005	1986	MS	492	4	487	0.015	0.003	5.110	5.110	0.000	0.100	1

p	endent	Variables			Inde	ependent \	/ariable	S			
		property	machinery								
b	wages	values	and equip	inventory	job	poverty	wages	income	industry	economic	demograph
1	0	0	0	0	1	1	1	0	0	0	
1	0	0	0	0	1	1	1	0	0	0	
1	0	0	0	0	1	1	1	0	0	0	
1	0	0	0	0	1	1	1	0	0	0	

Methodol	ogy				
			lagged		EZ at
Heckman	Propensity	dependent	dependent		current
Tobit	Score	variable	variable	EZ*variable	time
0	0	0	0	0	1
0	0	0	0	0	1
0	0	0	0	0	1
0	0	0	0	0	1

Estimator	•			
Ordinary				
Least	Maximum	Fixed	Random	Instrumental
Squares	Likelihood	Effects	effects	variables
1	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	1	0

EZ Charac	teristic	CS				
EZ	_			Capital		
initiated	zones	Subsidy	Restriction	Subsidy	Restriction	
1983	25	1	1	0	0	
1983	25	1	1	0	0	
1983	25	1	1	0	0	
1983	25	1	1	0	0	

Estimators

Fixed effects

Assumes study-level variables account for all the variation in the effect size

Random effects

Allows estimates to vary in an unpredictable way

How to Interpret the Resul

Let's look at the intercept, which provides the baseline estimate for all the studies

to	Est.	
	-0.111	*
MS	-0.083	
FL	-2.829	***
NJ	-0.114	**
US	-0.098	*
Published	-0.876	**
Average data year	0.000	**
Employment	0.025	***
Wealth	-0.020	**
Socioeconomic	0.007	
Employment measured as growth	0.006	***
EZ interacted with other variable	-0.003	
Current number of Ezs	-0.007	***
Propensity score method	-0.012	
First differencing method	-0.010	*
Ordinary Least Squares	0.001	
Fixed Effects	0.005	
Instrumental Variables	-0.021	**
Intercept (baseline)	0.639	**
R2	0.247	
Instrumental Variables Intercept (baseline)	-0.021 0.639	

Results cont.

Now let's look at some real-world variables

Га			Гоф	
	_			
-8.729	*	-1.890	-	
-8.792	*	-1.900	-	
8.755	*	1.880	-	
-			-0.111	*
-			-0.083	
-			-2.829	**
-			-0.114	**
0.020		1.540	-0.098	*
-0.769	***	-3.800	-0.876	**
0.005	**	2.090	0.000	**
0.064	*	1.900	0.025	**
-0.020	**	-2.050	-0.020	**
0.007		0.660	0.007	
-0.012	**	-2.240	0.006	**
0.033		1.120	-0.003	
0.007	***	9.090	-0.007	**
-0.002		-1.510	-0.012	
-0.007	***	-9.470	-0.010	*
0.000		0.240	0.001	
0.002		0.130	0.005	
-0.010		-0.740	-0.021	**
0.637	**	2.210	0.639	**
0.218				
	-8.792 8.755 - - - 0.020 -0.769 0.005 0.064 -0.020 0.007 -0.012 0.033 0.007 -0.002 -0.002 -0.000 0.002	-8.729 * -8.792 * 8.755 *	-8.729 * -1.890 -8.792 * -1.900 8.755 * 1.880 -	-8.729 * -1.8908.792 * -1.900 - 8.755 * 1.880

Conclusions

Average effect of EZ on employment is 0.6 percentage points

Labor restriction and capital subsidy lead to a 9 percentage point decline in the effect of EZ on employment

Capital restriction leads to a 9 percentage point increase